- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Lanza, Robert (5)
-
Aggarwal, Nancy (4)
-
Corbitt, Thomas (4)
-
Cripe, Jonathan (4)
-
Mavalvala, Nergis (4)
-
Cole, Garrett D. (3)
-
Libson, Adam (3)
-
Follman, David (2)
-
Heu, Paula (2)
-
Singh, Robinjeet (2)
-
Chen, Junxin (1)
-
Cole, Garrett_D (1)
-
Cullen, Torrey J. (1)
-
Lane, Benjamin_Bret (1)
-
McClelland, David E. (1)
-
Shadmany, Danial (1)
-
Trad_Nery, Marina (1)
-
Venneberg, Jasper_R (1)
-
Willke, Benno (1)
-
Yap, Min Jet (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Homodyne detection is a common self-referenced technique to extract optical quadratures. Due to ubiquitous fluctuations, experiments measuring optical quadratures require homodyne angle control. Current homodyne angle locking techniques only provide high quality error signals in a span significantly smaller thanĪradians, the span required for full state tomography, leading to inevitable discontinuities during full tomography. Here, we present and demonstrate a locking technique using a universally tunable modulator which produces high quality error signals at an arbitrary homodyne angle. Our work enables continuous full-state tomography and paves the way to backaction evasion protocols based on a time-varying homodyne angle.more » « less
-
Trad_Nery, Marina; Venneberg, Jasper_R; Aggarwal, Nancy; Cole, Garrett_D; Corbitt, Thomas; Cripe, Jonathan; Lanza, Robert; Willke, Benno (, Optics Letters)This Letter reports the experimental realization of a novel, to the best of our knowledge, active power stabilization scheme in which laser power fluctuations are sensed via the radiation pressure driven motion they induce on a movable mirror. The mirror position and its fluctuations were determined by means of a weak auxiliary laser beam and a Michelson interferometer, which formed the in-loop sensor of the power stabilization feedback control system. This sensing technique exploits a nondemolition measurement, which can result in higher sensitivity for power fluctuations than direct, and hence destructive, detection. Here we used this new scheme in a proof-of-concept experiment to demonstrate power stabilization in the frequency range from 1 Hz to 10 kHz, limited at low frequencies by the thermal noise of the movable mirror at room temperature.more » « less
-
Aggarwal, Nancy; Cullen, Torrey J.; Cripe, Jonathan; Cole, Garrett D.; Lanza, Robert; Libson, Adam; Follman, David; Heu, Paula; Corbitt, Thomas; Mavalvala, Nergis (, Nature Physics)
-
Cripe, Jonathan; Aggarwal, Nancy; Lanza, Robert; Libson, Adam; Singh, Robinjeet; Heu, Paula; Follman, David; Cole, Garrett D.; Mavalvala, Nergis; Corbitt, Thomas (, Nature)
-
Cripe, Jonathan; Aggarwal, Nancy; Singh, Robinjeet; Lanza, Robert; Libson, Adam; Yap, Min Jet; Cole, Garrett D.; McClelland, David E.; Mavalvala, Nergis; Corbitt, Thomas (, Physical Review A)
An official website of the United States government
